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Abstract—Computation of the reflection matrix for a finite, plane-parallel, vertically-inhomo-
geneous, isotropic atmosphere is considered. The fast invariant imbedding method of Sato,
Kawabata, and Hansen is extended to include polarization. Computational aspects of this
extension are discussed in detail, and numerical results are presented for the angular
distribution of polarized radiation reflected by an atmosphere with Rayleigh scattering and
an exponentially-varying albedo for single scattering.

1. INTRODUCTION

Sato et al' have proposed an efficient method (hereafter referred to as the fast invariant imbedding
method) to calculate the intensity of light reflected by a plane-parallel slab of finite optical
thickness. The method is based on a special predictor—corrector scheme for solving the invariant
imbedding equation for a Fourier-decomposed reflection function. They showed that for atmos-
pheres with continuously-varying optical properties, the fast invariant imbedding method becomes
substantially more efficient than the commonly used adding/doubling method.

The main purpose of the present paper is to extend the fast invariant imbedding method to
include polarization, i.e., to treat the albedo problem using the full (4 x 4) reflection matrix instead
of the reflection function. As was noted by De Haan et al’ this extension is in principle
straightforward, but should not be restricted only to replacing scalar quantities by the correspond-
ing matrices if a concise and efficient computer code is desired. We present some illustrative
numerical results for the classical problem of Rayleigh scattering. Finite slabs will be considered
with an exponentially-varying albedo for single scattering.

2. BASIC FORMULAE AND EQUATIONS

To describe the state of polarization of light, we use the intensity vector I, which has four Stokes

parameters as its components as follows: !

I= . )

vV

For a plane-parallel, isotropic, vertically-inhomogeneous atmosphere of optical thickness ¢, the
direction of light incident on or reflected by the atmosphere will be specified by the cosine of the
angle between the direction of light propagation and the normal to the boundaries of the
atmosphere 1(0 < 4 < 1) and by the azimuth angle ¢. The upper boundary of the atmosphere is
illuminated by a parallel beam of light, which is specified by the intensity vector nFé(u — )
x 6(¢p — @,) where § is the Dirac delta function; also I(z; y, ty, @ — @) is the intensity vector of
light reflected by the atmosphere. Expanding I(¢; u, to, ¢ — @) in a Fourier series, we have

0

It i o @ — @o) = Y, (2= 8,0)[I7'(t; 1, o)cos m(@ — @g) + I'(2; u, py)sin m(e — @), (2)

m=0

where §; is the Kronecker delta.
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Following Refs. 3-5, we write

17 (1 1y o) = HE + D)L (5 4, po) + 3(E — DY (25 1, o), A3)
(15 1, o) = 3(E — D)L (85 1, o) — H(E + D)L, (15 1, oo), ©)
L (85 1, o) = poR™(E5 1, 1o )F*, &)
where E is the (4 x 4) unit matrix,
D =diag(1, 1, —1, —1), (6)
F* =4E + D)F. @)
The (4 x 4) matrices R™(¢; u, y,) are solutions of the invariant imbedding equation
TG — (o R ) e 2 )

w l ’ ’
+5— | du'R™(t; p, p)Z" (W', o)
2p4 Jo

w 1
+2—J dp'Z"(—p, —p)R™(t; 1, po)
H Jo

1 1
+wJ f dp” dp"R™(t; p, )", —p")R™(E5 1", 1), (8)
0 0

which describes how the reflection matrix is changed when a new, optically-thin layer, which is
specified by the single scattering albedo w and by the matrices Z™ is added to the top of the
atmosphere. Equation (8) is supplemented by the initial condition

R™(0; p, po) = R™(u, o). ®
The (4 x 4) matrices Z™ are defined by*?®

Z(u,u’)=(—1)" Y P )SPs(u), uu'e[-1,+1], (10)

where

a; by 0 0

b} a3 O 0

S = . 11

0 0 a5 b (an

0 0 —b5 a;
The elements of S* are expansion coefficients since they follow from expansion of the elements of
the scattering matrix

oY

a(0) b,(0) 0 0
| bi(8) ay(6) 0 0
FO=1%0 0 4 bo (2
0 0 —b,(0) a.(0)
in terms of the generalized spherical functions P;,,(cos 8); here,
a,(0) =Y. aiPy(cos ), (13)
s=0
ay(9) + ay(0) = Y. (a3 +a3)Py(cos 0), (14)
s=2
ay(0) — ay(9) = ). (a3 — a3)P5_,(cos 6), (15)
s=2
a,0) = Y. ajPi(cos ), (16)

s=0
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b.(0)= 3, biPiscos), an
b,(0)= 3. b3Pin(cos 0), (18)

s=2
0 is the scattering angle.
The matrices P%, occurring in Eq. (10) are defined as
Pio(u) 0 0 0
0 P P, 0

P10 pw Pw 0 | 2
0 0 0 Pro(u)
where
Pl () = iP5 2(0) £ Pratu) o)

Convenient recurrence relations for computing generalized spherical functions P;,,(«) are given in
Refs. 2 and 4.
The matrices Z™ satisfy the symmetry relations*

Z7(u, u') = qu[Z7(w’, u)]'q,, @n
Z"(~u, —u') = [Z"(u’, u)l'qs, (22)
where T denotes matrix transposition, and
q; =diag(1, 1, —1, 1), 23)
q, =diag(1, 1,1, —1). (24)

In Sec. 3 and 4, we shall discuss the technique for calculating the matrices R” by means of a
numerical solution of Eq. (8). When the matrices R™ are computed, the intensity vector for the
reflected light can be found through Eqgs. (2)—(7).

3. NUMERICAL SOLUTION OF THE INVARIANT IMBEDDING EQUATION

Using a quadrature formula for numerical evaluation of the integrals in Eq. (8), we obtain the
system of ordinary differential equations

w
4#.’“.

1]

dR™ L, ) ! : "
%&_= _<_+5>R (&5 s 1) +

i J

w n
2=t ) + 5 Y R o, )2t 1)W

i k=1

W n n n
+5— ‘Z Z"(— i, — W )R™(E; e, )Wy +w Z 2 R™(¢; wiy )L™ (i, — P >)

2p 620 k=1k'=1
X R™(t; ey 1)WeWie s (25)
where y, and w, (k =1, ... ,nx) are the division points and weights of the quadrature formula in
the interval (0, 1), respectively. The initial condition is
R™(0; p;, ;) = R™(p;, ) (26)
Following Sato et al,! we rewrite Eq. (25) in the compact form
d
@ R(?) = — CR(t) + F(¢), 27
where
C = m+ 1, (28)

R() =R"(t; pis ), (29)
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w n
— Z R™(¢; piy )L™ (s )Wy

F(t)=wZ"(—u,, l‘j)/(4/4i/{i) + 2=,

w n
=Y ZM(— s — )R g, )W

+
20 =5

+w Y Y R i )L — e IRT(ES s )W W (30)
k=1k=1
Let the entire optical thickness of the atmosphere be z.. Dividing the interval [0, #.] into
subintervals [0, 1,],..., [t,_,, t], setting h,=t,—1t,_,, p=1,...,q, and assuming R(7,_,) to be
computed, we use the formal solution of Eq. (27) to compute'

R(t,) = exp(—Ch,)R(t,_) + J"p exp[—C(t, — t)]F(¢z) dz. 3D
tp 1
Then, approximating F(z) by a polynomial in ¢ of degree S, viz.
s
F(t) = S;) (t—1t,_\)(sthy) 'a,, 32)
we may evaluate the integral in Eq. (31) analytically and obtain the correction formula
R(t,) = exp(—Ch,)R(t,_) + é‘oﬁa” 33)
where
Jo=01—exp(=Ch,))/C, (34
Soor=[1(s + DI =f/h,]/C. (35)

The matrices a, are determined from the successive values F(z,_s),...,F(¢,). We consider two
special cases.

(i) p = 1. For this case, S =1 and
F(0)=a,, F(t,)=a,+a; (36)
from Eq. (33), we have
R(t)) = exp(— Ch))R(0) + (fo —/))F(0) + £, F(1,). (37

(i) p = 2. For this case, S =2. We determine the matrices a,, a,, and a, from the system of
equations

F(1,_,)=a,—a,/d,+ a,/(2d}),
F(t,_,)=a,, F(,)=2a,+a +a,/2, (38)
where d, = h,/h,_,. Finally, we have from Eq. (33)
R(t,) = exp(—Ch,)R(1,_,) + dX(—fi + 2) (1 +d,) " 'F(z,_,)
+[fo+(d, — Dfi —=2d,£1F1,_ )+ (fi +2d,£,)(1 +d,)""F(z,). (39)

Equations (37) and (39) are systems of nonlinear equations and are solved by simple iterations.
As an initial estimate for p =1, we take

R;, (#,) = exp(— Ch))R(0) + £, F(0). (40)
For p =2, we use the linear extrapolation

R, () =R(#) + [R(1,) — R(0)] . (41)



Fast invariant imbedding method for polarized light 167

For p >3, we use the quadratic extrapolation
Ri(2,) =R(@t,_3)(t,— 1, ), — 1, )(t,-5—1,_2)(t,_3—1,_1)]
+ R, )=, ) — 1, M= 1, )t — 1,20
+R, )=, )=, D — 1, )G = 1,20)) (42)
The convergence criterion is
max|[Ro (¢,; tis B, — [Row (5 s )] 11 <A, L j=1,...ns; 0,0 =1,...,4 (43)

where r is the iteration number for the pth integration step, and A is the required accuracy of the
computations.

4., SOME COMPUTATIONAL ASPECTS

4.1. The azimuth-independent term
It follows from Egs. (10), (11), (19), and (20) that the matrix Z° is diagonal,® i.e.

Z 0
2°=|"" : 44
|: 0 ZU,,:I “44)
Here, 0 is the (2 x 2) zero matrix and Z,, and Z, are (2 x 2) matrices given, respectively, by
Zip(u,u') =) Py (u)SiP; (u), (45)
s=0
Zy(u,u)= Y, Po)SsPyL ), (46)
s=0
with
5 bS 5 bS
S; =[“; ] ;=[ o ] @)
by a3 —03 4,
o1 (u) = diag[Pgo(u), Po(u)), (43)
52 (1) = diag[Pg, (), Pgo(u)]. (49)
Assuming the matrix R%y, u,) to be diagonal,
Ry (4, o) 0
R, )=[ © : (50
Ho 0 Ru(um) )
we find from Egs. (8), (9), and (44) that the matrix R%(¢; p, y,) is also diagonal,
R (15 1, o) 0
R(¢; u, )=[ e . 51
b b 0 Rulimm) Gb

Thus, instead of solving Eq. (8) for the (4 x 4) matrix R%(z; u, ), we may solve two independent
equations for the (2 x 2) matrices R, (¢; p, ity) and Ry (¢; i, o). These equations are obtained from
Eq. (8) by the substitutions

Z°—>Z,Q, RO—>R,Q
and
2’>Zy, R°-Ry,.

Moreover, if the incident radiation is unpolarized or linearly polarized [i.e., if F = (F;, 0,0, 0)" or
F =(F,, F,,0,0)T, respectively], we may solve only the equation for the matrix Rj,. As a result,
the computational time and storage requirements are greatly reduced.
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4.2. Symmetry relations
Assuming the matrix R"(y, y,) to satisfy the symmetry relation

R7(4, o) = @5 [R" (o, 1)]"qs (52)
and using Egs. (8) and (22), we find that the matrix
RY (25 1, o) = @ [R™(; o, )]s
is also a solution of Eq. (8) subject to the initial condition
RT(0; 1, po) = R™(w, o).
Therefore, assuming uniqueness of the solution of Egs. (8), (9), we obtain the symmetry relation
R™(2; 4, o) = @3 [R™(2; pto, 1)]'qs. (53)

Using this symmetry relation, we can reduce the number of equations in Egs. (25) by the factor
2nx/(nx+ 1).
For the special case m =0, we have

Ryo (15 1, 1) = [Ryp (25 1o, )17,
Ruy(t; 1, o) = 3[Ry (25 1o, 1)1'qs (54)
where q; = diag(—1, 1).

4.3. Diagonalization of the matrices P:,(u)
In actual computations, diagonalization of the matrices P, (1) for m > 0 is useful.*> We write

P, (u) = SR;, (4)S, (55)
where
1 0 0 0
0 1//2 1/2 0
= T = -1 =
$=§'=8 0 12 —1,4/2 0|’ (36)
0 0 0 1
R, (u) = diag[P;o(u), P;,_,(u), Py (u), Pro(u)]. (57)
Then
Z"(u,u’y=(— l)mS{ Z R}, (1) [SS*SIR:, (u ’)}S. (58)
4.4. Supermatrices
Following Refs. 2 and 7, we define
[Z';i]N(i—l)+P.N(j—1)+‘l= WiW,-Z;':,(iH;, i,uj)a (59)
[R™()] - D+pNG-D+g = WiV R,’;’:,(’Q His l‘j), (60)
1
[C]N(i-l)+p.1v(j—1)+q=;5ij‘5pq’ (61)
[Q3]N(iA D+pNG—~D+q¢ = (1 - 25,;3)5.75,;4, (62)
[QA]N(i— D+pNG—D+q = (1 - 25,,4)5175,",, (63)

wherei, j=1,...,n%,p,q=1,..., N, and Nisin general equal to 4. The matrices Z7, , and R™(z)

are called supermatrices and are composed of n% matrices of dimension (N x N). From Egs. (21),
(22), and (53), we obtain the symmetry relations

Z7y, =QiZ7.]1'Qu, (64)



Fast invariant imbedding method for polarized light 169

Table 1. The expansion coefficients for the Rayleigh scatter- Table 2. Computational parame-
ing matrix. ters.
] ay a.; ag ai b? bg o N h1 d
[o] 2 0.03 1.03
0 1 o] o] (o] o] [¢]
1 3 0.04 1.04
! ° ° 3/2 ° ° 2 3 0.05 1.05
2 1/2 3 0 0 V3/2 0 i i
Z'Z'_r + = Q3 [Z’§ ¥ ]TQ3 > (65)
R7(1) = Q;[R"(1)]'Q;. (66)
Using the definitions of Egs. (59)-(63), we rewrite the invariant imbedding equation in the form
dR™(¢ w w
dt( ) = —CR"(t) — R"(1)C + 2 cz” , C+ 3 R"()Z" . C

+ % CZ" _R™(t) + wR™()Z" _R"(t). (67)

Thus, the angle integration and the (4 x 4) matrix multiplication in Eq. (8) are replaced by the
single multiplication of supermatrices in Eq. (67), which is advantageous for computational
purposes.”’

By changing the value of N, several important particular cases can be considered. First, setting
N =1, we calculate the scalar reflection function.! Then, using the value N =2 for m =0, we
calculate the matrix R,,. Finally, setting N = 3 for m > 1, we calculate the matrices R”in the 3 x 3

approximation.®

4.5. Varying the size of integration steps

Sato et al' have noted that an important feature of the fast invariant imbedding method is the
possibility of varying the size of successive integration steps h, = t, —t,_,. The simplest way for
choosing the value of A, is to set h,=dh,_, for 1,_, < tx/2 with d > 1, and to set h,=h,_,/d
for t,_,>t«/2. Thus, approachmg the upper boundary of the atmosphere, we decrease the
size of the integration steps and, therefore, increase the accuracy of the computations for the
upper atmospheric layers that most significantly affect the Stokes parameters of the reflected
light.

Table 3. Stokes parameters of the reflected light for u,= 0.9, ¢,=0° and g =0.

I Q U
Ly ¢=0° @=90° ©=180° @=0° ¢ =90° §=180° p=90°
0.05 0.3946 0.3591 0.4153 -0.1993 -0.1428 -0.1786 ~0.2063
0.1 0.3889 0.3647 0.4295 -0.2022 -0.1364 -0.1616 -0.2030
0.2 0.3671 0.3645 0.4434 -0.2035 -0.1213 -0.1272 -0.1906
0.3 0.3390 0.3551 0.4430 -0.1987 -0.1037 -0,0946 -0.1734
0.4 0.3113 0.3424 0.4346 -0.1887 -0.0849 -0.0655 -0.1541
0.5 0.2881 0.3302 0.4224 -0.1750 -0.0659 -0.0406 -0.1343
0.6 0.2708 0.3198 0.4084 -0.1580 -0.0472 ~0.0205 -0.1146
0.7 0.2602 0.3119 0.3929 -0.1379 -0.0289 -0.0052 -0.0948
0.8 0.2567 0.3064 0.3752 -0.1139 -0.0111 0.0045 -0.0740
0.9 0.2625 0.3029 0.3528 -0.0838 0.0062 0.0066 -0,0502
1.0 0.3014 0.3014 0.3014 -0.0232 0.0232 -0.0232 ~0.0000
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Table 4. As in Table 3, for g =0.001.

I Q U
¥ @=0° @¢=90° ¢=180° Y=0° ¢ =90° ¢ =180° ¢=90°
0.05 0.3945 0.3589 0.4151 -0.1992 -0.1428 -0.1786 -0.2063
0.1 0.3887 0.3645 0.4293 -0.2021 ~0.1364 -0.1615 -0.2029
0.2 0.3668 0.3643 0.4430 -0.2034 -0.1213 =0.1272 ~-0.1905
0.3 0.3387 0.3548 0.4427 -0.1986 -0.1037 -0.0946 -0.1733
0.4 0.3110 0.3421 0.4343 -0.1887 -0.0849 -0.0654 -0.1540
0.5 0.2878 0.3298 0.4221 -0.1749 -0.0659 -0.0406 -0.1343
0.6 0.2706 0.3195 0.4080 -0.1579 -0.0472 -0.0205 -0.1146
0.7 0.2599 0.3116 0.3925 -0.1378 -0.0289 -0.0052 -0.0947
0.8 0.2564. 0.3061 0.3748 -0.1139 -0.0111 0.0045 ~0.0740
0.9 0.2622 0.3027 0.3525 -0.0837 0.0062 0.0065 -0.0502
1.0 0.3011 0.3011 0.3011 -0.0232 0.0232 -0.0232 ~-0.0000
Table 5. As in Table 3, for g =0.01.

I Q U
L ¢=0° Y=90° ¢=180° @=0° (¢ =90° ¢=180° @=90°
0.05 0.3928 0.3573 0.4134 -0.1990 ~0.1427 -0.1784 -0.2059
0.1 0.3867 0.3625 0.4272 -0.2018 -0.1363 -0.1614 -0.2024
0.2 0.3644 0.3618 0.4403 -0.2030 -0.1211 -0.1270 -0.1898
0.3 0.3361 0.3521 0.4396 -0.1980 -0.1035 -0.0945 ~0.1726
0.4 0.3084 0.3393 0.4310 -0.1880 -0.0847 -0.0654 -0.1533
0.5 0.2853 0.3271 0.4188 -0.1742 -0.0658 -0.0407 -0.1336
0.6 0.2681 0.3168 0.4048 -0.1573 -0.0471 -0.0206 -0.1139
0.7 0.2575 0.3090 0.3894 ~0.1372 -0.0289 -0.0053 -0,0942
0.8 0.2542 0.3035 0.3718 -0.1133 -0.0111 0.0044 -0.0735
0.9 0.2600 0.3002 0.3497 -0.0833 0.0062 0.0064 -0.0498
1.0 0.2987 0.2987 0.2987 -0.0231 0.0231 -0.0231 =0.0000

Table 6. As in Table 3, for g =0.1.

I Q U
s ¢=0° §=90° Y=180° ¢=0° g =90° ¢ =180° ¢=90°
0.05 0.3777 0.3427 0.3980 -0.1970 -0.1416 -0.1768 -0.2022
0.1 0.3686 0.3449 0.4081 -0.1989 -0.1348 -0.1594 -0.1976
0.2 0.3422 0.3395 0.4155 -0.1984 -0.1191 -0.1251 -0.1833
0.3 0.3123 0.3275 0.4115 -0.1923 -0.1014 -0.0930 -0.1654
0.4 0.2847 0.3140 0.4016 -0.1816 -0,0829 -0.0647 -0.1462
0.5 0.2623 0.3019 0.3892 -0.1675 -0.0643 -0.0406 -0.1269
0.6 0.2461 0.2921 0.3757 -0.1507 -0,0461 -0.0211 -0.1080
0.7 0.2364 0.2849 0.3611 -0.1310 -0.0283 -0.0063 -0.0891
0.8 0.2336 0.2801 0.3447 -0.1079 -0.0111 0.0032 -0.0695
0.9 0.2395 0.2773 0.3241 -0.0791 0.0056 0.0055 -0.0470
1.0 0.2764 0.2764 0.2764 -0.0219 0.0219 -0.0219 -0.0000
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Table 7. As in Table 3, for g =1.0.

I Q U
F ¢ =0° ¢=90° | ¢=180° ¢ =0° ¢ =90° ¢ =180° ¢=90°
0.05 0.2986 0.2673 0.3163 -0.1788 -0.1296 -0.1611 -0.1770
0.1 0.2733 0.2528 0.3061 -0.1728 -0.1187 -0.1399 -0.1643
0.2 0.2288 0.2259 0.2850 -0.1600 -0.0984 -0.1039 -0.1404
0.3 0.1947 0.2049 0.2665 -0.1468 -0.0801 -0.0749 -0.1197
0.4 0.1695 0.1893 0.2510 -0.1332 -0.0635 -0.0517 -0.1018
0.5 0.1518 0.1780 0.2378 ~0.1192 -0.0483 -0.0332 -0.0860
0.6 0.1402 0.1703 0.2263 -0.1047 -0.0342 -0.0187 -0.0717
0.7 0.1338 0.1652 0.2154 -0.0893 -0.0211 -0.0077 -0.0583
0.8 0.1324 0.1623 0.2043 -0.0723 -0.0087 -0.0004 -0.0449
0.9 0.1369 0.1610 0.1911 -0.0522 0.0031 0.0020 -0.0301
1.0 0.1611 0.1611 0.1611 -0.0144 0.0144 -0.0144 ~0.0000

5. NUMERICAL RESULTS

In this section, we present some numerical results for the classical problem of Rayleigh scattering.
For this particular case, the scattering matrix is

1 +cos? —sin’0 0 0
3 —sin’8 1+4cos*6 0 0
Fr(0)=7 0 0 2cosf 0 (68)
0 0 0 2cos 0

The values of the expansion coefficients are listed in Table 1.

As an example, we consider a slab with optical thickness 7« = 1 at the top of a perfectly absorbing
ground. In Tables 3-7, we give numerical results for unpolarized incident light F = (1, 0, 0, 0)T, and
for the single scattering albedo of the form

w = exp(—g1), (69)

where the optical depth t is measured from the upper boundary of the slab. We have used a
Gaussian quadrature with nx = 20 division points. Computational parameters N (see Sec. 4.4), h,
and d (see Sec. 4.5) are listed in Table 2.

Our program was tested by comparing our results with those of Garcia and Siewert,’ Viik,'* and
Maiorino and Siewert."' In Ref. 9, numerical results are given for inhomogeneous, isotropically-
scattering atmospheres (scalar case) with an exponentially-varying single scattering albedo [cf. Eq.
(69)]. In Refs. 10 and 11, results are given for homogeneous, Rayleigh-scattering atmospheres (the
vector case). For all of these cases, we have found excellent agreement.
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